您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 数据挖掘18大算法实现以及其他相关经典DM算法

  2. 数据挖掘算法 算法目录 18大DM算法 包名 目录名 算法名 AssociationAnalysis DataMining_Apriori Apriori-关联规则挖掘算法 AssociationAnalysis DataMining_FPTree FPTree-频繁模式树算法 BaggingAndBoosting DataMining_AdaBoost AdaBoost-装袋提升算法 Classification DataMining_CART CART-分类回归树算法 Classifica
  3. 所属分类:专业指导

    • 发布日期:2016-01-05
    • 文件大小:225280
    • 提供者:huangyueranbbc
  1. 数据挖掘18大算法实现以及其他相关经典DM算法

  2. 数据挖掘算法 算法目录 18大DM算法 包名 目录名 算法名 AssociationAnalysis DataMining_Apriori Apriori-关联规则挖掘算法 AssociationAnalysis DataMining_FPTree FPTree-频繁模式树算法 BaggingAndBoosting DataMining_AdaBoost AdaBoost-装袋提升算法 Classification DataMining_CART CART-分类回归树算法 Classifica
  3. 所属分类:Java

    • 发布日期:2017-04-08
    • 文件大小:225280
    • 提供者:q6115759
  1. 目标选择的最近邻优化算法[1].pdf

  2. 摘要 坦克分队作战中, 攻防双方多辆坦克的火力对抗涉及到火力分配 , 这时每辆坦克往往向威胁 自身最大的 目标开火 , 但 这种 目标选择的整体效果并不是最优的。 由于最优火力分配是整数规划问题 , 当坦克分队中坦克数量较大时 , 求解最优的 火力分配存在时间长和计算复杂等间题。 因此在作战仿真或者指挥自动化系统中, 对于这一问题多采用次优算法处理。 该 文提出一种最近邻目标选择优化算法, 使得最大限度地减轻了对方对己方 坦克分队 的威胁, 从而提高了坦克作战效能。 关键词 模型 优化 坦克作
  3. 所属分类:其它

    • 发布日期:2009-04-24
    • 文件大小:268288
    • 提供者:lihandsome_ls
  1. 数据运营思维导图

  2. 数据运营 作用&意义 知错能改,善莫大焉 —错在哪里,数据分析告诉你 运筹帷幄,决胜千里 —怎么做好“运筹”,数据分析告诉你 以往鉴来,未卜先知 —怎么发现历史的规律以预测未来,数据分析告诉你 工作思维 对业务的透彻理解是数据分析的前提 数据分析是精细化运营,要建立起体系化思维(金字塔思维) 自上而下 目标—维度拆解—数据分析模型—发现问题—优化策略 自下而上 异常数据 影响因素 影响因素与问题数据之间的相关关系 原因 优化策略 数据化运营7大经典思路 以目标为导向,学会数据拆分 细分到极致
  3. 所属分类:互联网

    • 发布日期:2018-04-26
    • 文件大小:68157440
    • 提供者:zzwin1006
  1. 2019数据运营思维导图

  2. 数据运营 作用&意义 知错能改,善莫大焉 —错在哪里,数据分析告诉你 运筹帷幄,决胜千里 —怎么做好“运筹”,数据分析告诉你 以往鉴来,未卜先知 —怎么发现历史的规律以预测未来,数据分析告诉你 工作思维 对业务的透彻理解是数据分析的前提 数据分析是精细化运营,要建立起体系化思维(金字塔思维) 自上而下 目标—维度拆解—数据分析模型—发现问题—优化策略 自下而上 异常数据 影响因素 影响因素与问题数据之间的相关关系 原因 优化策略 数据化运营7大经典思路 以目标为导向,学会数据拆分 细分到极致
  3. 所属分类:Java

    • 发布日期:2019-03-29
    • 文件大小:15728640
    • 提供者:qq_36826498
  1. 基于快速密度聚类的电力通信网节点重要性评估.pdf

  2. 电力通信网的节点重要性评估是电力通信研究的一个重要议题。针对目前电力通信网节点重要性评估存在 的连接权值单一以及评价指标单一等问题,利用电力通信网的带宽和距离作为权值,计算电力通信网节点的多种 评价指标:节点强度、节点紧密度以及节点的介数。基于电力通信网节点的多种评价指标,利用快速密度聚类方 法建立电力通信网的节点重要性评估模型,为电网通信的规划做支撑。通过快速密度聚类方法进行无监督的分类, 将节点分为若干个重要性等级。该方法可以有效地改善基于距离的无监督分类方法的不足。利用某省的实际电
  3. 所属分类:其它

    • 发布日期:2019-09-13
    • 文件大小:403456
    • 提供者:weixin_38743481
  1. 机器学习算法基础学习总结

  2. 机器学习算法基础学习总结2.基本算法 2.1 Logistic回归 优点:计算代价不高,易于理解和实现。 缺点:容易欠拟合,分类精度可能不高 适用数据类型:数值型和标称型数据。 类别:分类算法。 试用场景:解决二分类问题。 简述: Logistic回归算法基于 Sigmoid函数,或者说 Sigmoid就是逻辑回归函数。 Sigmoid函数定义如下:1/(1-exp(-z))。函数值域范围(0,1)。可以用来做分 类器。 Sigmoid函数的函数曲线如下: 逻辑凹归模型分解如下:(1)首先将不同
  3. 所属分类:机器学习

    • 发布日期:2019-07-02
    • 文件大小:312320
    • 提供者:abacaba
  1. 基于流形鉴别信息的特征选择及其结构化稀疏表示

  2. 针对启发式特征选择策略忽略了特征间相关信息导致子最优的问题, 提出一种基于流形鉴别信息的特征选择(MDFS) 算法. 该算法根据近邻信息和标签信息刻画高维数据类内和类间流形结构, 以最小化流形散度差为准则构建目标函数, 并增加结构化稀疏正则项降低特征间冗余. 通过统一框架下的特征权重迭代优化获得最优特征子集. 在ORL 库、COIL20 库、Isolet1 库上的聚类实验表明, MDFS算法选取的特征子集相比传统算法具有更高的识别准确率和归一化互信息, 验证了所提出算法的有效性.
  3. 所属分类:其它

    • 发布日期:2021-01-13
    • 文件大小:1048576
    • 提供者:weixin_38569515
  1. K近邻优化估计的SAR图像建模与目标检测算法

  2. 在非均匀杂波环境下的合成孔径雷达(synthetic aperture radar,SAR)图像背景建模问题中,针对非参量建模算法Parzen窗估计严重依赖于窗宽设置及最优核函数选择的问题,提出一种基于K近邻优化的概率密度函数估计算法,解决因固定近邻数而导致估计不准确甚至不能估计的问题.该算法不需要图像的任何先验知识,且无需考虑窗宽的设置及最优核函数的选择问题.与Parzen窗估计、K分布和$G^0$分布的对比实验表明,所提出的K近邻优化估计算法可以实现对单峰、多峰甚至不规则图像数据的准确建模,
  3. 所属分类:其它

    • 发布日期:2021-01-12
    • 文件大小:6291456
    • 提供者:weixin_38745233