电力负荷受众多因素的共同作用表现为复杂不规则的混沌规律,须采取合适的方法才能获得准确的短期负荷预测值。考虑因训练样本数目的不同而产生迥异的预测效果,先以经典混沌时间序列为例,比较训练样本数目从10变化到2 000时的各预测方法性能。仿真结果表明,经典混沌方法对小数目训练样本效果明显,随着样本数目的增多,智能混沌方法的优势渐显,其中最小二乘支持向量机有优异的预测精度和运算速度,且较神经网络对样本数目的依赖性小。欧洲智能技术网络(EUNITE)预测结果表明,最小二乘支持向量机能灵敏捕获小样本混沌电力