您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. c语言泊松分布的计算

  2. 【问题描述】 泊松分布是一种常用的离散型概率分布,数学期望为m的泊松分布的分布函数定义如下: P(m, k) = mk * e-m/k! (k = 0, 1, 2, 3, …) 对于给定的m和k (0<m<2000, 0<= k < 2500),计算其概率,以科学格式输出,保留小数点后6位有效数字。 可以使用数学库函数,误差不超过0.000001。 【输入形式】 输入文件为当前目录下的poisson.in。文件中包含两个数字,分别为m,k的值。 【输出形式】 输出文件为
  3. 所属分类:C/C++

    • 发布日期:2012-04-05
    • 文件大小:827
    • 提供者:shuaiwang126
  1. 西财概率论与数理统计

  2. 第一章 随机事件与概率 教案 课件  习题 §1.1 随机事件   §1.2 事件的概率   §1.3 条件概率 §1.4 事件的独立性  第二章 随机变量及其分布 教案 课件  习题 §2.1 随机变量的概念   §2.2 离散型随机变量及其分布   §2.3 分布函数 §2.4 连续型随机变量及其分布   §2.5 随机变量函数的分布  第三章 二维随机变量及其分布 教案 课件  习题 §3.1 二维随机变量的概念   §3.2 二维离散型随机变量的分布   §3.3 二维连续型随机变量的
  3. 所属分类:专业指导

    • 发布日期:2008-09-23
    • 文件大小:7340032
    • 提供者:guohechen
  1. 研究生数学建摸模板之一

  2. 摘要:本文讨论了仓库容量有限条件下的随机存贮管理问题。首先建立了一个理论模型,根据题目要求写出平均费用的函数,该函数是关于订货点L和缺货天数X的函数,因为缺货天数X是一随机变量,这里给出了X为离散型和连续型两种模型,分三种情况讨论了各自的损失费用,然后得出期望平均费用函数 ,经过Maple软件的辅助,对L进行求导,令 从而得出求解最优订货点 的方程。由于计算量太过庞大,所以在建立理论模型之后,本文还给出了一种比较实用的求解全局最优的遍历搜索算法,应用于问题2中求解出了三种商品各自的最佳订货点。
  3. 所属分类:其它

    • 发布日期:2008-09-24
    • 文件大小:304128
    • 提供者:xiaoe5
  1. 统计 建模 R软件 R语言

  2. 统计建模与R软件 统计建模与R软件 上下册 第1章 概率统计的基本知识 1.1 随机事件与概率 1.1.1随机事件 1.1.2 概率 1.1.3 古典概型 1.1.4 几何概型 1.1.5 条件概率 1.1.6 概率的乘法公式、全概率公式、Bayes公式 1.1.7 独立事件 1.1.8 n重Bemoulli试验及其概率计算 1.2 随机变量及其分布 1.2.1随机变量的定义 1.2.2 随机变量的分布函数 1.2.3 离散型随机变量 1.2.4 连续型随机变量 1.2.5 随机向量 1.3 
  3. 所属分类:其它

    • 发布日期:2014-04-22
    • 文件大小:3145728
    • 提供者:zhang3310028
  1. 泊松分布函数

  2. 泊松分布 【问题描述】 泊松分布是一种常用的离散型概率分布,数学期望为m的泊松分布的分布函数定义如下: P(m, k) = mk * e-m/k! (k = 0, 1, 2, 3, …) 对于给定的m和k (0<m<2000, 0<= k < 2500),计算其概率,以科学格式输出,保留小数点后6位有效数字。 可以使用数学库函数,误差不超过0.000001。 【输入形式】 输入文件为当前目录下的poisson.in。 文件中包含两个数字,分别为m,k的值。 【输出形式】
  3. 所属分类:C

    • 发布日期:2014-10-27
    • 文件大小:542
    • 提供者:laigus
  1. 计算机 基础数学 总结的很好 很棒的资料

  2. 第一章 初等代数部分....................................................................................................................................................... 1 一、 数的运算律.............................................................................
  3. 所属分类:教育

    • 发布日期:2016-10-14
    • 文件大小:3145728
    • 提供者:xulin416
  1. 考研数学公式手册(数学一二三均适用).pdf

  2. 别人花10分钟做出来的题,你2分钟靠公式就可以解决。既然如此,又何必自己费心费力去推导呢?最主要的是,在真正考研的考场上,你可能会大脑空白,所以记清这些公式可能比你慌慌张张去推导的正确率高很多!目录 0000000000000 8第二部分线性代数8 ⊙0000000000000 第一章行列式 …(117) 第一节行列式的概念与性质…… (117 第二节行列式的计算 (119) 第二章矩阵 (121) 第一节矩阵的概念 …(122) 第二节矩阵的运算 (123) 第三节逆矩阵 (125) 第四节矩
  3. 所属分类:其它

    • 发布日期:2019-07-15
    • 文件大小:790626304
    • 提供者:aiboom
  1. 离散型随机变量的概率密度函数及其应用

  2. 利用单位脉冲函数定义了离散型随机变量的概率密度,给出离散型随机变量与其独立的连续型随机变量和分布的计算公式,且证明其和分布不可能为正态分布。
  3. 所属分类:其它

    • 发布日期:2020-05-05
    • 文件大小:89088
    • 提供者:weixin_38691055
  1. 使用超声波的智能手机手势识别.pdf

  2. 利用超声波技术,在智能手机上实现手势识别功能。非常实用的一篇论文徐曾春,吴凯娇,胡平:使用超声波的智能手机手势识别 ()挥手向前 ()挥手向后 ()挥手向左 ()挥手向右 图不同的手势时频图 特征均为先靠近发射源,然后远离发射源,但是细节方 面咯有不同。 实现细节 系统流程 获得反射的超声波数据集 图为系统流程图。首先,通过话筒获取 最初,系统先获得手势运动的时间序列片段,此时 段时间序列,经过快速傅里叶()变换将此序列从时片段已经经过处理,结果如图所示。出于本实验 域信号转换为频域信号。接着搜
  3. 所属分类:Android

    • 发布日期:2019-10-15
    • 文件大小:946176
    • 提供者:xiaokala_2011
  1. 保研概率论复习.pdf

  2. 概率论复习资料,保研用,课程考试复习请勿使用!未经允许请勿转载或用作商业用途!本次上传重新下调了下载积分第二章:二维变量 维变量 1.二维随机变量(X,Y):X与Y相互独立 2.(X,Y)的联合分布函数F(xy)与联合概率密度函数f(x,y) F(x,y)=P(X≤x,y≤y)=Jf(xydx f(x,y)=F(x, y) 、边缘分布与独立性 边缘分布:多维随机变量中只包含其中部分变量的概率分布。如对(XY)分布只研究 X的分布 2.边缘分布函数函数和边缘概率密度函数: X的边缘分布函数] Fx
  3. 所属分类:讲义

    • 发布日期:2019-10-05
    • 文件大小:547840
    • 提供者:qq_38633884
  1. 机器学习算法基础学习总结

  2. 机器学习算法基础学习总结2.基本算法 2.1 Logistic回归 优点:计算代价不高,易于理解和实现。 缺点:容易欠拟合,分类精度可能不高 适用数据类型:数值型和标称型数据。 类别:分类算法。 试用场景:解决二分类问题。 简述: Logistic回归算法基于 Sigmoid函数,或者说 Sigmoid就是逻辑回归函数。 Sigmoid函数定义如下:1/(1-exp(-z))。函数值域范围(0,1)。可以用来做分 类器。 Sigmoid函数的函数曲线如下: 逻辑凹归模型分解如下:(1)首先将不同
  3. 所属分类:机器学习

    • 发布日期:2019-07-02
    • 文件大小:312320
    • 提供者:abacaba
  1. 随机信号分析(常建平)全章(第一章)

  2. 随机信号分析(常建平)全章某繁忙的汽车站,每天有大量的汽车进出。设每辆汽车 在一天内出事故的概率为 ,若每天有辆汽车进出 汽车站,问汽车站出事故的次数不小于的概率是多少? n=1 分布 二项分布 n>∞0,p->0,np= 泊松分布 →成立,0不成立>高斯分布 实际计算中,只需满足 ≤,二项分布就趋近于泊松分布 汽车站出事故的次数不小于的概率 答案 已知随机变量的概率密度为 其它 求:①系数?②的分布函数?③<≤<≤ 第③问 方法一 联合分布函数 性质: 若任意四
  3. 所属分类:专业指导

    • 发布日期:2019-03-01
    • 文件大小:664576
    • 提供者:weixin_41180209
  1. 概率论与数理统计公式整理

  2. 设离散型随机变量 的可能取值为Xk(k=1,2,…)且取各个值的概率,即事件(X=Xk)的概率为 P(X=xk)=pk,k=1,2,…, 则称上式为离散型随机变量 的概率分布或分布律。有时也用分布列的形式给出: 。 显然分布律应满足下列条件: (1) , , (2) 。
  3. 所属分类:专业指导

    • 发布日期:2012-10-21
    • 文件大小:982016
    • 提供者:zhfang_csd
  1. 概率论与数理统计ppt

  2. 随机变量; 离散型随机变量的概率分布;随机变量的分布函数;连续型随机变量的概率密度;随机变量的函数的分布
  3. 所属分类:专业指导

  1. (PrivBayes)构建基于差分隐私的贝叶斯网络数据发布模型

  2. 建立基于差分隐私的贝叶斯网络,使得结构化数据同时兼备隐私性与效用性 1)对原始d维数据集预处理:运用二分k均值算法对连续型数据离散化 2)设置差分隐私预算epsilon1,使用指数机制来构造k度的贝叶斯网络N,并输出d对AP的概率分布 3)设置差分隐私运算epsilon2,在d对AP对的概率分布中加入拉普拉斯噪声 4)生成具有噪声的近似AP对概率分布 5)从具有噪声的概率分布中采样,生成发布数据集 6)通过α-边际分布和SVM分类器评估新生成的数据集的隐私性和效用性。
  3. 所属分类:网络安全

    • 发布日期:2020-07-15
    • 文件大小:2097152
    • 提供者:haroldlee2
  1. 基于信息熵的溶解氧传感器数据融合处理方法

  2. 针对海洋光学溶解氧传感器测量数据处理问题,设计一种基于信息熵的数据融合方法。首先基于最大熵方法估计出离散样本数据的概率分布,再根据测量列的不确定度推定样本数据的置信区间用来进行粗差剔除,最后基于信息熵对有效样本进行数据融合,获得"干净"的标定数据。结合HJY1-1型光学溶解氧传感器标定实验实例,将该方法与其他方法进行比较评估,该方法的融合结果绝对误差为0.01、均方误差为0.018 9,均优于参比方法,能够有效克服各种主观测量因素对标定数据的"污染",提高传感器测量数据的稳定性和可靠性。
  3. 所属分类:其它

    • 发布日期:2020-07-25
    • 文件大小:901120
    • 提供者:weixin_38568031
  1. 《概率论》大学课堂笔记——高分笔记,考试复习专用.pdf

  2. 一、预备知识 1.1 排列、组合、集合、二项式定理 1.2 随机试验、随机事件 1.3 事件的概率 1.4 概率的公理化意义 1.5 条件概率 1.6 全概率公式及贝叶斯公式 二、一维随机变量 2.1 离散随机变量 2.2 连续型随机变量 三、二维随机变量 3.1 二维离散型随机变量 3.2 二维连续型随机变量 四、随机变量函数的分布 六、方差 七、大数定律
  3. 所属分类:讲义

    • 发布日期:2020-12-18
    • 文件大小:34603008
    • 提供者:qq_41498261
  1. 离散随机变量的常用分布

  2. 离散型随机变量的常用分布 [ + ] 两点分布 1 若事件A发生 0 若事件A不发生 记做 r,v X ~ B(1,p) [ + ] 二项分布 n次伯努利实验的成功次数X,每次伯努利实验成功概率p q = 1 – p 记做 r,vX~B(n,p)r,v X ~ B(n,p) r,vX~B(n,p) 1=(p+q)n=∑k=0nCnkpkqn−k 1 = (p+q)^{n} = \sum_{k=0}^nC_{n}^{k}p^kq^{n-k}1=(p+q)n=k=0∑n​Cnk​pkqn−k 利用
  3. 所属分类:其它

    • 发布日期:2021-01-07
    • 文件大小:36864
    • 提供者:weixin_38668160
  1. 具有传感器随机丢包的非线性网络概率间隔时滞系统的镇定

  2. 本文研究了具有概率间隔时滞和传感器随机丢包的非线性网络系统的稳定性问题。 通过利用时变时延概率分布的信息,并考虑带补偿的随机传感器丢包,建立了非线性随机时滞系统模型。 在获得的模型的基础上,通过选择适当的Lyapunov函数并利用新的离散Jensen型不等式,得出充分的条件以获得最大可允许延迟边界,延迟间隔出现率和数据包丢失率与随机随机稳定性的关系。非线性网络控制系统。 针对求解相应的线性矩阵不等式,还提出了两种输出反馈控制器的设计程序。 提供了数值示例来说明所提出技术的有效性和适用性。
  3. 所属分类:其它

    • 发布日期:2021-02-24
    • 文件大小:1048576
    • 提供者:weixin_38641111
  1. 基于在线评价信息的属性权重确定及方案排序方法

  2. 近年来,数据体量较大的多属性在线评价信息在一些网站中大量涌现,并且在线评价信息往往呈现离散随机分布的形式,如何基于在线评价信息确定属性权重并进行方案排序,这是一个新的值得关注的研究问题。本文提出了一种基于在线评价信息的属性权重确定及方案排序方法,在方法中,首先将每个属性的在线评价信息描述为离散型概率分布函数形式,并构建加权累积分布函数决策矩阵;然后依据该矩阵,通过定义理想累积分布向量和每个方案与其向量的距离,构建确定属性权重的优化模型;进一步地,通过求解优化模型可得到每个属性的权重,在此基础上,
  3. 所属分类:其它

    • 发布日期:2021-01-14
    • 文件大小:190464
    • 提供者:weixin_38518376
« 12 »