您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 稀疏性正则化的图像泊松去噪算法

  2. 图像去噪是图像处理中的基本问题, 目标是从含噪 的观测图像估计出理想图像, 通常这是一个不适定的反 问题, 大量文献对该问题进行了深入的研究, 不过主要 针对的是加性高斯白噪声, 然而在光量子计数成像系统 中, 如 CCD 固态光电检测器阵列、天文成像、计算 X 射 线成像(CR) 、荧光共焦显微成像等等, 获取的图像往往 受到量子噪声的污染, 量子噪声服从泊松分布的统计法 则, 并非加性噪声, 且噪声强度与方差是信号依赖的, 统 计上, 亮度大的像素受到更多的干扰, 因此去除泊松噪 声是一个
  3. 所属分类:专业指导

    • 发布日期:2012-05-11
    • 文件大小:291840
    • 提供者:zhubin000
  1. 稀疏分解图像去噪

  2. 传统的去噪方法往往假设含噪图像的有用信息处在低频区域,而噪声信息处在高频区域,从而基于中值滤波、Wiener 滤波、小波变换等方法实现图像去噪,而实际上这种假设并不总是成立的。基于图像的稀疏表示,近几年来研究者们提出了基于过完备字典稀疏表示的图像去噪模型,其基本原理是将图像的稀疏表示作为有用信息,将逼近残差视为噪声。利用 K-SVD 算法求得基于稀疏和冗余的训练字典,同时针对 K-SVD 算法仅适合处理小规模数据的局限,通过定义全局最优来强制图像局部块的稀疏性。文献[28]提出了稀疏性正则化的
  3. 所属分类:讲义

    • 发布日期:2018-03-30
    • 文件大小:2097152
    • 提供者:qq_24599599