红黑树(Red Black Tree) 是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,典型的用途是实现关联数组。 它是在1972年由Rudolf Bayer发明的,当时被称为平衡二叉B树(symmetric binary B-trees)。后来,在1978年被 Leo J. Guibas 和 Robert Sedgewick 修改为如今的“红黑树”。
红黑树(Red Black Tree) 是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,典型的用途是实现关联数组。 它是在1972年由Rudolf Bayer发明的,当时被称为平衡二叉B树(symmetric binary B-trees)。后来,在1978年被 Leo J. Guibas 和 Robert Sedgewick 修改为如今的“红黑树”。 红黑树和AVL树类似,都是在进行插入和删除操作时通过特定操作保持二叉查找树的平衡,从而获得较高的查找性能。 它虽然是复杂的,但它的
红黑树(Red Black Tree) 是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,典型的用途是实现关联数组。 [1]
红黑树是在1972年由Rudolf Bayer发明的,当时被称为平衡二叉B树(symmetric binary B-trees)。后来,在1978年被 Leo J. Guibas 和 Robert Sedgewick 修改为如今的“红黑树”。 [2]
红黑树是一种特化的AVL树(平衡二叉树),都是在进行插入和删除操作时通过特定操作保持二叉查找树的平衡,从而获
AVL和红黑树性能对比,有详细的测试数据。AVL和红黑树都是平衡树。
Binary search tree (BST) based data structures, such
as AVL trees, red-black trees, and splay trees, are often
used in system software, such as operating system
kernels. Choosing the right kind of tree can impac
红黑树插入时的自平衡
红黑树实质上是一棵自平衡的二叉查找树,引入带颜色的节点也是为了方便在进行插入或删除操作时,如果破坏了二叉查找树的平衡性能通过一系列变换保持平衡。
红黑树的性质
每个节点要么是红色,要么是黑色
根节点必须是黑色
两个红色节点不能相连
从根节点出发到达任意叶子节点经过的黑色节点个数相同
红黑树的数据结构
红黑树实质上是一颗二叉查找树,左子树的值小于根节点的值,右子树的值大于根节点的值。
public class RedBlackTree {
private stati