针对模型VDSR(very deep super resolution)收敛速度慢,训练前需要对原始图像进行预处理,以及网络中存在的冗余性等问题,提出了一种基于深度跳跃级联的单幅图像超分辨率重建(DCSR)算法。DCSR算法省去了图像预处理,直接在低分辨率图像上提取浅层特征,并使用亚像素卷积对图像进行放大;通过使用跳跃级联块可以充分利用每个卷积层提取到图像特征,实现特征重用,减少网络的冗余性。网络的跳跃级联块可以直接从输出到每一层建立短连接,加快网络的收敛速度,缓解梯度消失问题。实验结果表明,在