鉴于传统神经网络和支持向量机机理复杂、计算量大的缺陷,很难实时跟踪磷酸铁锂电池组复杂快速的内部反应,影响电池荷电状态的估算精度,提出应用一种简单、有效的极限学习机对一额定容量为100 Ah、额定电压为72 V的纯电动汽车磷酸铁锂电池组建模,并分别与BP神经网络、RBF神经网络、支持向量机进行对比;随后,以学习时间和泛化性能为优化目标,应用粒子群方法寻找最佳隐层节点个数;结果表明,基于极限学习机的磷酸铁锂电池组模型的学习时间、泛化性能优于BP神经网络、RBF神经网络、支持向量机;隐层节点优化后,模