您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 结合图模型的优化多类SVM及智能交通应用

  2. 为提高多类支持向量机分类器对多目标的分类准确度,提出一种结合无向图模型优化的多类支持向量机分类器。首先,利用余弦测度计算训练数据之间的相似度,构建包含训练数据和相似度矩阵的无向图模型,求解相似度约束矩阵。然后,将相似度约束矩阵引入多类支持向量机求解的目标函数,构建优化的多类支持向量机分类器。最后,将优化的多类支持向量机分类器用于智能交通领域,结合梯度方向直方图特征检测行人和车辆目标。实验表明,该方法检测行人和车辆目标的错误率低于经典的多类支持向量机分类器和目前主流的目标检测方法。
  3. 所属分类:其它

    • 发布日期:2020-10-16
    • 文件大小:372736
    • 提供者:weixin_38674763