主成分分析实例:一个平均值为(1,3)、标准差在(0.878,0.478)方向上为3、在其正交方向为1的高斯分布。这里以黑色显示的两个向量是这个分布的协方差矩阵的特征向量,其长度按对应的特征值之平方根为比例,并且移动到以原分布的平均值为原点。在多元统计分析中,主成分分析(英语:Principalcomponentsanalysis,PCA)是一种分析、简化数据集的技术。主成分分析经常用于减少数据集的维数,同时保持数据集中的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低