您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 维吾尔文无监督自动切分及无监督特征选择

  2. 维吾尔文常用切分方法会产生大量的语义抽象甚至多义的词特征,因此学习算法难以发现高维数据中隐藏的结构.提出一种无监督切分方法 dme-TS和一种无监督特征选择方法 UMRMR-UFS.dme-TS从大规模生语料中自动获取单词Bi-gram及上下文语境信息,并将相邻单词间的t-测试差、互信息及双词上下文邻接对熵的线性融合作为一个组合统计量(dme)来评价单词间的结合能力,从而将文本切分成语义具体的独立语言单位的特征集合.UMRMR-UFS用一种综合考虑最大相关度和最小冗余的无监督特征选择标准(UMR
  3. 所属分类:其它

    • 发布日期:2021-03-10
    • 文件大小:1048576
    • 提供者:weixin_38624519