线性判别分析(LDA)是最经典的子空间学习和有监督判别特征提取方法之一.受到流形学习的启发,近年来众多基于LDA的改进方法被提出.尽管出发点不同,但这些算法本质上都是基于欧氏距离来度量样本的空间散布度.欧氏距离的非线性特性带来了如下两个问题:1)算法对噪声和异常样本点敏感;2)算法对流形或者是多模态数据集中局部散布度较大的样本点过度强调,导致特征提取过程中数据的本质结构特征被破坏.为了解决这些问题,提出一种新的基于非参数判别分析(NDA)的维数约减方法,称作动态加权非参数判别分析(DWNDA).