点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 联邦学习AdvancesandOpenProblemsinFederatedLearning
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
联邦学习Advances and Open Problems in Federated Learning
联邦学习Advances and Open Problems in Federated Learning,谷歌最新力作,分析了联邦学习最新研究热点和未来的方向
所属分类:
机器学习
发布日期:2020-01-09
文件大小:1048576
提供者:
tgrdgfhgfhgfhg
Advances and Open Problems in Federated Learning 总结翻译
摘要 联邦学习(FL)是一种机器学习设置,在这种设置中,许多客户(例如移动设备或整个组织)在中央服务 器(例如服务提供商)的协调下协作地训练模型,同时保持训练数据分散。FL体现了集中数据收集和最 小化的原则,可以减轻由于传统的、集中的机器学习和数据科学方法所带来的许多系统隐私风险和成 本。在FL研究爆炸性增长的推动下,本文讨论了近年来的进展,并提出了大量的开放问题和挑战。 MENU1.引言跨设备联邦学习设置联邦学习中模型的生命周期典型的联邦训练过程联邦学习研究组织2. 放宽核心FL假设: 应用
所属分类:
其它
发布日期:2021-01-08
文件大小:515072
提供者:
weixin_38555229