您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 背景和前景建模中的正则化优化

  2. 背景和前景建模是计算机视觉应用中的一种典型方法。 当前的通用“低秩+稀疏”模型将视频序列中的帧分解为低秩背景和稀疏前景。 但是这种模型中的稀疏假设可能与现实不符,并且该模型也不能直接反映背景和前景之间的相关性。 因此,我们提出了一种新颖的模型来解决此问题,方法是将排列的数据矩阵分解为低阶背景和移动前景。 在这里,我们只需要给出背景的低阶先验假设,并使前景与背景尽可能地分离。 在此划分的基础上,我们使用一对双重范数(核范数和频谱范数)分别对前景和背景进行正则化。 此外,我们使用重新加权函数代替正常
  3. 所属分类:其它

    • 发布日期:2021-03-06
    • 文件大小:2097152
    • 提供者:weixin_38689857
  1. 融合

  2. 复杂环境中的目标检测受到很多因素的影响,传统的鲁棒主成分分析(RPCA)无法从受干扰的数据中获得最低秩表示,为此,提出了一种融合l1-全变分(TV)正则化约束RPCA模型的视频去噪和目标检测算法。以RPCA为基础,在低秩稀疏分解框架下,使用核范数的低秩性对背景进行建模,利用三维TV正则化结合l1正则化对前景目标的稀疏性和空间连续性进行约束,再结合l2范数正则化约束噪声部分,从而弥补现有RPCA模型的不足。采用交替迭代的思想,利用增广拉格朗日乘子法对目标函数进行优化求解,实现了复杂环境下的去噪和目
  3. 所属分类:其它

    • 发布日期:2021-02-21
    • 文件大小:4194304
    • 提供者:weixin_38590567