基于卡尔曼滤波的背景差分算法存在背景更新不自适应,对光照变化、物体移入移出敏感等问题。提出了一种改进的以分类分块为核心的背景差分算法。首先,将前N帧视频序列图像求取均值得到初始背景模型;将第K帧图像与背景图像进行差分得到差分图像,再按照均值和标准差进行两次分类分块,分出前景块和背景块;在单个像素基础上对前景块进行背景细分割,确定运动目标区域;依据相邻两帧之间的灰度信息完成背景自适应更新。实验证明,本文算法能有效克服外界光线缓慢变化和背景中物体的轻微移动等问题。该算法具有较好的稳健性、相对较快的运