样本熵(或近似熵)以信息增长率刻画时间序列的复杂性,能应用于短时序列,因而在生理信号分析中被广泛采用.然而,一方面由于传统样本熵采用与标准差线性相关的容限,使得熵值易受非平稳突变干扰的影响,另一方面传统样本熵还受序列概率分布的影响,从而导致其并非单纯反映序列的信息增长率.针对上述两个问题,将符号动力学与样本熵结合,提出等概率符号化样本熵方法,并对其物理意义、数学推导及参数选取都做了详细阐述.通过对噪声数据的仿真计算,验证了该方法的正确性及其区分不同强度时间相关的有效性.此方法应用于脑电信号分析的