点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 自适应蚁群算法在求解TSP问题中的应用
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
数学建模方法:蚁群算法
标题——作者——出处 基于蚁群优化算法递归神经网络的短期负荷预测 蚁群算法的小改进 基于蚁群算法的无人机任务规划 多态蚁群算法 MCM基板互连测试的单探针路径优化研究 改进的增强型蚁群算法 基于云模型理论的蚁群算法改进研究 基于禁忌搜索与蚁群最优结合算法的配电网规划 自适应蚁群算法在序列比对中的应用 基于蚁群算法的QoS多播路由优化算法 多目标优化问题的蚁群算法研究 多线程蚁群算法及其在最短路问题上的应用研究 改进的蚁群算法在2D HP模型中的应用 制造系统通用作业计划与蚁群算法优化 基于混合
所属分类:
其它
发布日期:2010-05-21
文件大小:25165824
提供者:
wu_wenyang
蚁群算法与免疫算法的融合及其在TSP 中的应用
提出一种基于抗体片段局部最优搜索的克隆选择和蚁群自适应融合算法. 引入混沌扰动来增加抗体种群的 多样性, 以提高蚁群算法的搜索能力; 利用克隆扩增、免疫基因等相关算子的操作, 增强了克隆选择算法搜索的效率;通过自适应控制参数, 实现了克隆选择与蚁群优化的有机结合及局部最优搜索策略的应用, 加快了收敛速度, 克服了抗体种群“早熟”问题, 提高了求解精度. 仿真实验结果表明, 该算法具有可靠的全局收敛性, 较快的收敛速度.
所属分类:
其它
发布日期:2010-06-20
文件大小:246784
提供者:
xiaohua0227
蚁群算法研究文章打包大集合(100多篇论文!)
用蚁群算法求解类TSP问题的研究 用蚁群优化算法求解中国旅行商问题 自适应蚁群算法在序列比对中的应用 100多篇论文!
所属分类:
其它
发布日期:2010-11-07
文件大小:25165824
提供者:
seahgost
蚁群算法详细资料
包括: 基于蚁群优化算法递归神经网络的短期负荷预测 蚁群算法的小改进 基于蚁群算法的无人机任务规划 多态蚁群算法 MCM基板互连测试的单探针路径优化研究 改进的增强型蚁群算法 基于云模型理论的蚁群算法改进研究 基于禁忌搜索与蚁群最优结合算法的配电网规划 自适应蚁群算法在序列比对中的应用 基于蚁群算法的QoS多播路由优化算法 多目标优化问题的蚁群算法研究 多线程蚁群算法及其在最短路问题上的应用研究 改进的蚁群算法在2D HP模型中的应用 制造系统通用作业计划与蚁群算法优化 基于混合行为蚁群算法的
所属分类:
专业指导
发布日期:2014-04-25
文件大小:25165824
提供者:
kolchakzy
自适应蚁群算法在求解TSP问题中的应用
围绕蚁群优化算法的理论及应用,针对蚁群算法在TSP规划中求解能力不足的难题,运用了一种基于自适应的蚂蚁算法,并对TSP规划进行了设计。为了提高路径规划的效率,将自适应与传统的蚂蚁算法相结合形成了自适应蚁群算法。仿真实验结果表明,改进后算法能够在较短时间内找到全局最优路径,相对于基本的蚁群算法在收敛速度、搜索质量和局部寻优方面都有了明显的提高。
所属分类:
其它
发布日期:2020-10-18
文件大小:276480
提供者:
weixin_38584148
蚁群算法在求解TSP问题中的改进研究
针对蚁群算法在求解大规模优化问题时存在的3个缺点:消耗时间长、蚂蚁在下次搜索时目标导向不强导致搜索随机性大、寻优路径上的信息素过度增强导致得到假的最优解。本文提出了基于边缘初始化和自适应全局信息素的改进蚁群算法。在相同参数下,其搜索时间大大缩短,并且得到了更好的最优解。将其应用到旅行商(TSP)问题中,和基本蚁群算法、遗传算法相比较,其具有以下优点:较好的搜索最优解的能力;对新解不会过早的终止;探索新解的能力进一步增强。因此,改进的蚁群算法在求解TSP等组合优化问题时非常有效。
所属分类:
其它
发布日期:2021-01-28
文件大小:1048576
提供者:
weixin_38587705