针对基于层次短语翻译模型的统计机器翻译使用上下文信息有限,时态翻译质量不高的问题,提出一种融合时态特征的日英统计机器翻译方法。该方法通过引入翻译规则的时态分类约束信息,解码器可以根据每条规则的潜在时态分类,为相应时态的句子匹配到最合适的规则进行翻译。首先从双语训练语料中抽取时态特征构建最大熵分类模型,然后再抽取包含各类时态信息的层次短语规则的时态特征,最后将规则的时态分类结果作为一类新特征,融入基于层次短语的翻译系统中。实验结果表明,与基线系统相比,该方法在多个测试集上提高了翻译质量,在一定程度