针对使用规则和机器学习方法判别句间关系时出现因机器学习多次迭代而导致规则权值削弱现象,进而导致判别正确率偏低的问题,提出了在规则和机器学习相结合过程中对导入的明显规则特征进行加强处理的方法。首先,抽取依存词汇、语义、句子结构等具有明显规则的特有特征;然后,基于一些句间关系指示词提取普适的特征;其次,将特征写入待输入的数据向量,并且增加一维向量用来存储出现的明显规则特征;最后,运用LIBSVM模型结合规则和机器学习进行实验。实验结果表明,加强后的实验正确率较之加强前平均提高了两个百分点,各句间关系