在全景视频目标跟踪过程中,由于光照条件变化复杂和目标相对镜头运动时尺度变化剧烈,目标跟踪算法存在精度低和适用性差等问题。为了解决这个问题,提出了一种基于改进SiameseRPN的全景视频目标跟踪算法。首先采用MobileNetV3中的网络结构提取深度特征,使算法对全景视频序列中出现的场景缺陷有更好的适应性,并利用Squeeze and Excite模块增加网络对特征选择的敏感度。提出并构建了一种基于双线性插值的特征融合模块,运用双线性插值的方法使输出的后三层深度特征具有相同尺度,并融合这三层特征