您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 论文笔记—Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace

  2. 论文摘要:基于梯度的元学习已被证明具有足够的表现力,可以近似任何学习算法。 尽管先前的此类方法已在元学习任务中取得成功,但它们诉诸于简单的gradientdescentduringmeta测试。 我们的主要贡献是MT-net,它使元学习者能够了解每个子层的激活空间,该子空间的任务指定清除器在其上执行梯度下降。 另外,MT-net的任务特定学习者相对于元学习距离度量执行梯度下降,这会使激活空间对任务身份更加敏感。 我们证明了这个学习的子空间的维度反映了任务特定学习者的适应任务的复杂性,并且我们的模
  3. 所属分类:深度学习

    • 发布日期:2020-07-21
    • 文件大小:961536
    • 提供者:liz_Lee