您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. PyTorch 模型训练实用教程

  2. 本教程内容主要为在 PyTorch 中训练一个模型所可能涉及到的方法及函 数, 并且对 PyTorch 提供的数据增强方法(22 个)、权值初始化方法(10 个)、损失函数(17 个)、优化器(6 个)及 tensorboardX 的方法(13 个) 进行了详细介绍,本教程分为四章, 结构与机器学习三大部分一致。 第一章, 介绍数据的划分,预处理,数据增强; 第二章, 介绍模型的定义,权值初始化,模型 Finetune; 第三章, 介绍各种损失函数及优化器; 第四章, 介绍可视化工具,用于监控数
  3. 所属分类:机器学习

    • 发布日期:2019-03-03
    • 文件大小:4194304
    • 提供者:qq_29893385
  1. 详解PyTorch批训练及优化器比较

  2. 本篇文章主要介绍了详解PyTorch批训练及优化器比较,详细的介绍了什么是PyTorch批训练和PyTorch的Optimizer优化器,非常具有实用价值,需要的朋友可以参考下
  3. 所属分类:其它

    • 发布日期:2020-09-20
    • 文件大小:147456
    • 提供者:weixin_38520275
  1. 详解PyTorch批训练及优化器比较

  2. 一、PyTorch批训练 1. 概述 PyTorch提供了一种将数据包装起来进行批训练的工具——DataLoader。使用的时候,只需要将我们的数据首先转换为torch的tensor形式,再转换成torch可以识别的Dataset格式,然后将Dataset放入DataLoader中就可以啦。 import torch import torch.utils.data as Data torch.manual_seed(1) # 设定随机数种子 BATCH_SIZE = 5 x = torc
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:146432
    • 提供者:weixin_38526914