潜在狄利克雷分布(LDA)以词袋(bag of words,BOW)模型为基础,简化了建模的复杂度,但使得主题的语义连贯性较差,文档表征能力不强。为解决此问题,提出了一种基于语义分布相似度的主题模型。该模型在EM(expectation maximization)算法框架下,使用GPU(generalized Pólya urn)模型加入单词—单词和文档—主题语义分布相似度来引导主题建模,从语义关联层面上削弱了词袋假设对主题产生的影响。在四个公开数据集上的实验表明,基于语义分布相似度的主题模型在