传统验证码识别方法对不同类型的验证码泛化能力和鲁棒性较差。为此,提出一种基于深度卷积神经网络的端对端验证码识别方法。首先,通过并行级联的卷积层构建简易Inception模块,替代Google-net的卷积层,在降低调整参数数量的同时,提高网络对于不同感受野尺度的适应性。同时,采用全局平均池化层替换原全连接层以防止过拟合,提高网络学习效率。其次,在训练过程中,直接利用深度网络的学习能力自动提取和识别验证码图像的字符特征信息,无须对验证码图像进行预分割,可以有效避免因字符分割引起的误差累积问题。通过