点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 贝叶斯估计;贝叶斯决策
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
贝叶斯估计和贝叶斯决策算法
贝叶斯估计的pdf,对学习模式识别和机器学习的有帮助,希望对大家有帮助。
所属分类:
其它
发布日期:2010-09-14
文件大小:872448
提供者:
benben0413
清华模式识别第一大次作业
用身高体重数据进行性别分类的实验 用本组采集的数据作训练样本,采用身高和体重为特征进行性别分类,在正 态分布假设下估计概率密度,建立最小错误率贝叶斯分类器,写出得到的决 策规则;将分类器应用到训练集上计算训练错误率;把分类器应用到 dataset1.txt 上,计算测试错误率。在分类器设计时尝试采用不同先验概率(比如0.5 对0.5,0.24 对0.76 等),考查对决策和错误率的影响。 自行给出一个决策表,采用最小风险贝叶斯决策重复上面的实验。 用题2 中得到的似然比或对数似然比为分类指标,
所属分类:
专业指导
发布日期:2013-12-24
文件大小:50176
提供者:
hechao930407
清华大学模式识别第二次大作业
1. 仍然使用第一次作业中收集的数据作为训练集(注意:不得超过20+20 例样 本),采用身高和体重为特征进行性别分类,训练SVM 分类器,在测试数据 dataset1.txt 上测试分类效果。SVM 中分别使用线性核和高斯核,参数自己 确定。 2. 使用一个较大的数据集(dataset2.txt)作训练样本,采用身高和体重为特征 进行性别分类,在正态分布假设下估计概率密度,建立最小错误率贝叶斯分 类器,写出得到的决策规则;把分类器应用到dataset1.txt 上,计算测试错 误率。(自行决
所属分类:
专业指导
发布日期:2013-12-24
文件大小:57344
提供者:
hechao930407
模式识别(介绍了模式识别的各种方法)
模式描述方法:特征向量描述,结构基元描述(基元和其间的连接关系) 相应的模式识别方法是:统计模式识别法,结构(句法)模式识别法 统计模式识别法:客体->数据获取(二维图像、一位波形、逻辑值、物理参量,常用矩阵或向量表示)->预处理(去除噪声,加强有用的信息,对退化或失真进行复原)->特征抽取(对庞大的原始数据进行选择或变换,得到特征向量)->分类器设计(用一定数量的训练样本,确定出一套有效率且准确的分类判别规则)->分类器(执行规则,输出结果)->结果 前沿
所属分类:
网络基础
发布日期:2009-04-12
文件大小:3145728
提供者:
kou869929526
基于动态贝叶斯网络的战场信息预测与评估_陈固胜
现代信息化战争中,战场态势估计己经成为支撑现代作战指挥决策的核心技术之 一。战场态势估计的实质是基于战场信息的决策级上的推理过程。目前战场态势估计的 主要问题包括:(侦察手段有限,获得的态势信息具有不确定性;(现有的态势估 计侧重于对敌杀伤预测,忽略了自身安全。因此根据动态不确定性战场信息完成态势估 计为战场指挥员提供科学辅助决策成为当前亟需解决的问题。 鉴于动态贝叶斯网络在处理动态不确定性问题方面的优势。本文提出了基于动态贝 叶斯网络的战场信息预测与评估。本文完成的主要工作包括: 论证基于动
所属分类:
机器学习
发布日期:2018-04-12
文件大小:5242880
提供者:
hustjq