您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 偏微分方程数值解的Matlab 实现

  2. 工程中有许多问题可以归结为偏微分方程问题,如弹塑性力学中研究对象(结构、边坡等)内部的应力应变问题、地下水渗流问题等。这些由偏微分方程及边界条件、初始条件等组合成的数学模型,只有在十分特殊的条件下才能求得解析解。因此,在很长一段时间内,人们对于这一类问题是无能为力的。随着计算机技术的发展,各种数值方法应运而生,如有限元法、有限差分法、离散元法、拉格朗日元法等等。利用数值法,可以求得这些问题的数值解。它不是问题的精确解,但可以无限接近精确解。Matlab采用有限元法求解偏微分方程的数值解
  3. 所属分类:软件测试

    • 发布日期:2013-05-31
    • 文件大小:803840
    • 提供者:u010909712
  1. 边界元法论述.doc

  2. 边界元的简要论述 界元法(boundary element method)是一种继有限元法之后发展起来的一种新数值方法,与有限元法在连续体域内划分单元的基本思想不同,边界元法是只在定义域的边界上划分单元,用满足控制方程的函数去逼近边界条件。所以边界元法与有限元相比,具有单元个数少,数据准备简单等优点。但用边界元法解非线性问题时,遇到同非线性项相对应的区域积分,这种积分在奇异点附近有强烈的奇异性,使求解遇到困难。
  3. 所属分类:其它

    • 发布日期:2020-06-03
    • 文件大小:565248
    • 提供者:huanxiongsifu