特征选择在文本分类中起重要的作用.文档频率(DF)、信息增益(IG)和互信息(MI)等特征选择方法在文本分类中广泛应用.已有的实验结果表明,IG是最有效的特征选择算法之一,DF稍差而MI效果相对较差.在文本分类中,现有的特征选择函数性能的评估均是通过实验验证的方法,即完全是基于经验的方法,为此提出了一种定性地评估特征选择函数性能的方法,并且定义了一组与分类信息相关的基本的约束条件.分析和实验表明,IG完全满足该约束条件,DF不能完全满足,MI和该约束相冲突,即一个特征选择算法的性能在实验中的表现