:随着遥感图像分辨率的日益提高,遥感图像的尺寸和数据量也不断地增大,同时随着遥感应用的发展,对图像配准的性能也提出越来越高的要求,基于此,提出一种特征级高分辨率遥感图像快速自动配准方法。首
先,对图像进行Haar小波变换,基于小波变换后的近似图像进行配准以提高配准速度;其次,根据不同的遥感图像来源使用不同的特征提取方法(光学图像使用Canny边缘提取算子,SAR图像使用Ratio Of Averages算子),并将线特征转化为点特征;然后,依据特征点间最小角与次小角的角度之比小于某一阈值来确定初
河流遥感图像是背景复杂的非匀质图像,利用传统的活动轮廓模型进行分割往往不够准确。针对这一问题,提出了基于区域信息融合的混合活动轮廓模型来分割河流遥感图像。方法 该混合模型将 Chan-Vese(CV)模型和基于交叉熵的活动轮廓模型的外部能量约束项相结合,并赋予归一化调节比例系数。通过计算轮廓曲线内外区域像素灰度的方差和交叉熵,指导曲线逼近目标边缘。为了加速混合模型的演化,引入曲线内外区域像素灰度的类内绝对差,取代原有的内外区域能量权值,以提高混合模型的分割效率。结果 大量实验结果表明,相较于 C