地物纹理的复杂性,使地物分类一直是遥感领域研究的热点和难点。机载激光技术可以直接获取地物的三维点云信息,影像数据可以提供丰富的波谱信息,因此,结合机载激光点云和航空影像主被动遥感数据对地物进行分类。首先,将三维点云数据转换成网格数据,并利用顶帽变换算子去除噪声点;然后,对网格数据进行区域分割,引入植被区域限制的分水岭算法生成聚类区域;最后,利用模糊证据理论对不同聚类区域进行地物类型识别。用ISPRS数据集中的机载激光点云和航空影像数据作为实验数据,对本方法进行精度评价。结果表明,与基于单点的证据