您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 采用小波包ASGSO-RBF的采煤机滚动轴承故障诊断

  2. 针对采煤机滚动轴承常见的突发问题诊断准确性不高和速度慢,以小波包和RBF神经网络为基础,提出了由小波包分解提取各个节点特征能量谱与自适应步长萤火虫算法优化的RBF神经网络进行分类辨识的采煤机滚动轴承故障诊断方法.对振动传感器输出的信号进行小波包分解,运用基于代价函数的局域判别基(LDB)算法对小波包分解进行裁剪,获取最优的特征能量谱,经处理后作为特征向量训练ASGSO-RBF神经网络,建立诊断模型.实验结果表明:所建模型的故障辨识正确率达到95.8%以上,相较于其他算法模型具有更低的误报率和漏报
  3. 所属分类:其它

    • 发布日期:2020-05-15
    • 文件大小:632832
    • 提供者:weixin_38621897