扩散光学层析成像(DOT)是一种利用近红外光来探测生物组织光学结构的低成本、无辐射损伤、成像深度深的在体光学功能性成像技术。由于生物组织体自身需满足强散射、低吸收以及成像空间分辨率高等需求,因此DOT重建的逆问题具有严重的病态特性。传统的逆问题解决办法主要是基于代数迭代的重建方法,随着人工智能的发展及大数据时代的到来,深度学习研究掀起了一个新高潮,基于深度学习网络模型的逆问题解决方法逐步被用于DOT重建过程中。通过梳理传统的DOT重建算法,重点综述了最新深度学习用于DOT重建的研究进展,旨在为本