点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 金融数据广义不对称拉普拉斯分布的似然和二次距离方法
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
金融数据广义不对称拉普拉斯分布的似然和二次距离方法
研究了使用单纯形直接搜索算法对广义不对称拉普拉斯(GAL)分布(也称为方差伽马)的最大似然(ML)估计。 在本文中,我们使用数值直接搜索技术来最大化对数似然率以获得ML估计量,而不是使用传统的EM算法。 GAL的密度函数仅是连续的,相对于参数而言是不可微分的,并且Bessel函数在密度中的出现使得难以获得整个GAL系列的渐近协方差矩阵。 利用M估计理论,研究了ML估计量的性质。 ML估计量对于GAL系列是一致的,并且仅对于非对称Laplace(AL)系列可以保证其渐近正态性。 获得了AL族的渐近
所属分类:
其它
发布日期:2020-06-05
文件大小:483328
提供者:
weixin_38738189