在实际的光纤周界安防系统中,既要求判断入侵事件类别,又要求对各类事件发生的可能性做出全面评估。对此提出一种基于自回归滑动平均(ARMA)建模与Sigmoid概率拟合的入侵事件识别方法。在判断入侵事件类别方面,将光纤振动信号的ARMA建模系数与信号自身过零率相结合,构造特征向量,并将其馈入支持向量机(SVM),实现对攀爬、敲击、晃动、剪切、脚踢和撞击6种常见的入侵动作的识别;在评估各类事件的发生可能性方面,引入Sigmoid模型,对训练模式的SVM的各输出值作参数拟合,进而将测试样本的SVM值代入