您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 集成方法:装袋,RandomForest和AdaBoostClassifier-源码

  2. 在之前的实验中,我使用朴素贝叶斯(Naive Bayes)对此垃圾邮件进行分类。 在本笔记本中,我们将通过使用一些新技术(例如Bagging,RandomForest和AdaBoostClassifier)扩展先前的分析。 事实证明,我们的朴素贝叶斯模型实际上做得很好。 但是,让我们看一下其他一些模型,看看是否仍然无法改进。 特别是在本笔记本中,我们将研究以下技术: 可以找到有关合奏方法的另一个非常有用的指南。 这些合奏方法结合了多种技术: 引导通过学习者传递的数据(装袋)。 对用于
  3. 所属分类:其它

    • 发布日期:2021-02-13
    • 文件大小:373760
    • 提供者:weixin_42127783