我们研究了由矢量或标量(张量)非粒子的旋转轴向对称分布所产生的时空中由理想的平行板形成的空腔中的无质量标量场的卡西米尔效应,该板绕其轨道运动。 通过校正爱因斯坦方程式的Kerr解,将非粒子的存在并入背景,其中考虑了与非粒子理论相关的特征长度和尺度尺寸。 我们表明,卡西米尔能量密度也取决于这些参数。 还对卡西米尔能量密度的“非重力”极限进行了分析,在该极限中,特征长度与视线半径相比非常大。 在零温度下,我们证明了这样的极限意味着系统的不稳定性,因为卡西米尔能量密度变为虚数。 将一般结果与卡西米尔效