您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于多特征融合的高光谱遥感图像分类研究

  2. 遥感图像分类的应用在遥感图像研究中具有重要意义。为了提高高光谱遥感图像分类精度,本文提出了基于多特征融合的高光谱遥感分类方法。该方法将图像的空间特征和光谱特征归一融合,然后使用AdaBoost分类器集成算法对特征进行分类。首先,该方法使用主成分分析对高光谱数据降维,并提取图像的纹理特征和直方图特征,然后将三种特征归一化;最后使用AdaBoost集成分类方法对高光谱遥感数据分类。实验结果表明,相比于单个特征分类,该方法可取得较高的分类精度。
  3. 所属分类:其它

    • 发布日期:2021-03-07
    • 文件大小:1048576
    • 提供者:weixin_38668776
  1. 高光谱遥感数据集成分类算法

  2. 在实际应用中,在高光谱遥感图像的监督分类中很难获得足够数量的训练样本。 此外,训练样本可能无法代表整个空间的真实分布。 为了解决这些问题,提出了一种结合生成算法(高斯混合)和判别模型(支持集群机)的集成算法进行分类。 对反射光学系统成像光谱仪传感器收集的高光谱数据集进行的实验结果验证了该方法的有效性。
  3. 所属分类:其它

    • 发布日期:2021-02-23
    • 文件大小:210944
    • 提供者:weixin_38709379
  1. 基于集成学习的高光谱图像一类分类算法

  2. 由于高光谱图像的光谱分辨率已经达到了10 nm甚至更高,使其具有了辨识很多原本在其他遥感图像中无法识别出现的地物。但较高的光谱分辨率也带来了高维数据的处理难题。为了充分利用高光谱图像的高维数据信息,提高一类分类器性能,提出了一种基于集成学习的高光谱图像一类分类方法。该方法将训练样本生成多个随机子空间的低维训练样本集,在这些子空间训练集上训练支持向量数据描述(SVDD),并对其进行精简处理,最后均值合并这些分类器为一个集成分类器。实验结果表明,与光谱角匹配、一类支持向量机(OC-SVM)和直接SV
  3. 所属分类:其它

    • 发布日期:2021-02-05
    • 文件大小:1048576
    • 提供者:weixin_38611877