您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 高效,有效的字典学习的逐块坐标下降方案

  2. 基于稀疏表示的字典学习通常被认为是一种重新排列原始数据结构以使能量在非正交和不完整字典上紧凑的方法,广泛用于信号处理,模式识别,机器学习,统计学和神经科学。 当前的稀疏表示框架将优化问题分解为两个子问题,即使用不同的优化器的交替稀疏编码和字典学习,分别处理字典和代码中的元素。 在本文中,我们对字典和代码中的元素进行同质处理。 最初的优化直接解耦为几个按块替换的子问题,而不是上述两个问题。 因此,稀疏编码和字典学习优化被统一在一起。 更准确地说,将优化问题中涉及的变量划分为几个合适的块,并保留凸性
  3. 所属分类:其它

    • 发布日期:2021-03-06
    • 文件大小:1048576
    • 提供者:weixin_38658982