您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 非负矩阵与张量分解及其应用

  2. 阵的低秩逼近是一种大规模矩阵低秩近似表示技术,是从大规模、复杂的数据中 寻求数据潜在信息的一种强有力方法。非负矩阵分解( Nonnegative MatrixFactorization, NMF)) 是矩阵的低秩逼近方法之一,它是指被分解的矩阵和分解结果矩阵的数值都 是非负的。由于该方法符合数据的真实物理属性,数据的可解释性强,分解结果能够表 示事物的局部特征,且模型符合人们对于客观世界的认识规律(整体是由局部组成的) 等优点, 模型和算法自提出以来得到了广泛研究和应用,已经被成功地应用到许多
  3. 所属分类:算法与数据结构

    • 发布日期:2017-11-11
    • 文件大小:2097152
    • 提供者:puppet_love
  1. 基于流行学习的雷达辐射源识别技术

  2. 雷达辐射源识别是现代信息化电子战中侦察部 雷达辐射源识别是现代信息化电子战中侦察部 雷达辐射源识别是现代信息化电子战中侦察部 雷达辐射源识别是现代信息化电子战中侦察部 雷达辐射源识别是现代信息化电子战中侦察部 雷达辐射源识别是现代信息化电子战中侦察部 雷达辐射源识别是现代信息化电子战中侦察部 雷达辐射源识别是现代信息化电子战中侦察部 雷达辐射源识别是现代信息化电子战中侦察部 雷达辐射源识别是现代信息化电子战中侦察部 雷达辐射源识别是现代信息化电子战中侦察部 雷达辐射源识别是现代信息化电子战中侦察
  3. 所属分类:深度学习

    • 发布日期:2018-12-08
    • 文件大小:5242880
    • 提供者:weixin_43363108
  1. 稀疏主成分分析算法研究.caj

  2. 现在,全球已进入互联网时代,在各个领域都能收集到丰富多样的数据信息.通过对这些数据信息的处理,可以更加丰富,具体的描述客观对象,帮助人们找到事物的本质规律,以致做出正确的判断与措施来提高社会资源利用率.但在实际问题应用中,这些海量的高维数据之间往往存在大量冗余.因此,如何对这些数据进行处理,找到数据之间的内在联系,已成为人们日益关注的问题.传统的主成分分析方法是很受欢迎的处理高维数据的降维工具,但其提取的主成分的元素大都是非零的,这就很难去解释主成分对应的具体特征是什么.稀疏主成分分析是在主成分
  3. 所属分类:互联网

    • 发布日期:2020-05-22
    • 文件大小:2097152
    • 提供者:qq_41061352
  1. 稀疏主成分分析的相关研究.caj

  2. 现在,全球已进入互联网时代,在各个领域都能收集到丰富多样的数据信息.通过对这些数据信息的处理,可以更加丰富,具体的描述客观对象,帮助人们找到事物的本质规律,以致做出正确的判断与措施来提高社会资源利用率.但在实际问题应用中,这些海量的高维数据之间往往存在大量冗余.因此,如何对这些数据进行处理,找到数据之间的内在联系,已成为人们日益关注的问题.传统的主成分分析方法是很受欢迎的处理高维数据的降维工具,但其提取的主成分的元素大都是非零的,这就很难去解释主成分对应的具体特征是什么.稀疏主成分分析是在主成分
  3. 所属分类:互联网

    • 发布日期:2020-05-22
    • 文件大小:2097152
    • 提供者:qq_41061352
  1. 总结:Bootstrap(自助法),Bagging,Boosting(提升) - 简书.pdf

  2. 关于机器学习方面的集成算法,包括boosting和bagging,里面讲解详细,值得下载2019/4/27 总结: Bootstrap(白助法), Bagging, Boosting(提升)-简书 assiier 1 -9 Decition boundary Classifier 2 Decislon boundary 2 Classifier 3 o Decision boundary 3 ▲△▲ △6▲ Feature 1 Feature 1 Featur (∑ g Feature Ense
  3. 所属分类:机器学习

    • 发布日期:2019-10-13
    • 文件大小:2097152
    • 提供者:qq_15141977
  1. 高维数据分类中的特征降维研究

  2. 高维数据分类中的特征降维研究
  3. 所属分类:其它

    • 发布日期:2021-02-08
    • 文件大小:325632
    • 提供者:weixin_38622467