您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. 基于opencv3.1库的JAVA源码

  2. 第1章 Java概述、安装及简易教学 14 1-1 Java概述 14 1-2 Java安装 16 1-3 Eclipse安装 18 1-4 GUI设计工具WindowBuilder 18 1-5 在Eclipse开发第一个Java程式 23 1-6 在Eclipse开发第一个Java视窗程式-显示影像 26 1-7 在Eclipse开发视窗程式-slider控制元件 34 1-8 在Eclipse开发视窗程式-按钮控制元件 39 1-9 好用的Eclipse热键 41 第2章 OpenCV概
  3. 所属分类:图像处理

    • 发布日期:2018-09-29
    • 文件大小:1048576
    • 提供者:caozhenguan
  1. 鸢尾花分类与降维

  2. 这段时间,自己学习了一些有关机器学习的算法,现在拿鸢尾花分类来对这四种进行巩固与回顾。 这些算法都是直接使用的skearn库的算法,并未自己编写。 鸢尾花的降维 import matplotlib.pyplot as plt from sklearn.decomposition import PCA from sklearn.datasets import load_iris data = load_iris() y = data.target X = data.data pca = PCA(n
  3. 所属分类:其它

    • 发布日期:2020-12-21
    • 文件大小:110592
    • 提供者:weixin_38596485
  1. 鸢尾花分类与降维

  2. 这段时间,自己学习了一些有关机器学习的算法,现在拿鸢尾花分类来对这四种进行巩固与回顾。 这些算法都是直接使用的skearn库的算法,并未自己编写。 鸢尾花的降维 import matplotlib.pyplot as plt from sklearn.decomposition import PCA from sklearn.datasets import load_iris data = load_iris() y = data.target X = data.data pca = PCA(n
  3. 所属分类:其它

    • 发布日期:2020-12-21
    • 文件大小:110592
    • 提供者:weixin_38743084
  1. Python sklearn库实现PCA教程(以鸢尾花分类为例)

  2. PCA简介 主成分分析(Principal Component Analysis,PCA)是最常用的一种降维方法,通常用于高维数据集的探索与可视化,还可以用作数据压缩和预处理等。矩阵的主成分就是其协方差矩阵对应的特征向量,按照对应的特征值大小进行排序,最大的特征值就是第一主成分,其次是第二主成分,以此类推。 基本步骤: 具体实现 我们通过Python的sklearn库来实现鸢尾花数据进行降维,数据本身是4维的降维后变成2维,可以在平面中画出样本点的分布。样本数据结构如下图: 其中样本总数
  3. 所属分类:其它

    • 发布日期:2020-12-20
    • 文件大小:145408
    • 提供者:weixin_38686677