点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - 1正则化的加权非负矩阵分解实现多个不完整视图聚类
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
通过具有L2,1正则化的加权非负矩阵分解实现多个不完整视图聚类
随着技术的进步,数据通常具有多种形式或来自多种来源。 多视图聚类为从此类数据生成聚类提供了一种自然的方式。 尽管多视图聚类已经成功地应用于许多应用程序中,但是大多数以前的方法都假定每个视图的完整性(即,每个实例都出现在所有视图中)。 但是,在现实世界的应用程序中,通常有许多视图可供学习,但没有一个是完整的。 所有视图的不完整和可用视图的数量使得难以集成所有不完整的视图并获得更好的群集解决方案。 在本文中,我们提出了MIC(多不完整视图聚类)算法,该算法基于具有L2,1正则化的加权非负矩阵分解。
所属分类:
其它
发布日期:2021-03-07
文件大小:475136
提供者:
weixin_38718413