利用高光谱技术对火龙果可溶性固形物含量(SSC)检测进行研究,为火龙果内部品质无损检测提供科学方法.以火龙果为研究对象,对光谱数据进行预处理,应用连续投影算法(SPA)进行特征变量的选择,通过偏最小二乘法(PLS)和前馈反向传播神经网络法(BPNN)建立预测模型,分析了火龙果果皮对SSC 模型预测精度的影响.实验结果表明:采用平滑去噪(MAS) 效果最优,PLS 模型的交叉验证相关系数(Rcv) 为0.8635,交叉验证均方根误差(RMSECV)为0.6791,可提高火龙果可溶性固形物模型精度;