Chapter 1 Introduction 1 1.1 Drawing a Triangle 2 1.2 Drawing a Triangle Mesh 17 1.3 Drawing a Complicated Scene 27 1.4 Abstraction of Systems 27 Chapter 2 Core Systems 31 2.1 The Low-Level System 31 2.1.1 Basic Data Structures 33 2.1.2 Encapsulatin
% 二分法解方程 % Bisection Method % The first parameter fx is a external function with respect to viable x. % xa is the left point of the initial interval % xb is the right point of the initial interval % n is the number of iterations.
APPLIED NUMERICAL LINEAR ALGEBRA James W. Demmel University of California Berkeley, California Society for Industrial and Applied Mathematics Philadelphia Contents Preface ix 1 Introduction 1 1.1 Basic Notation 1 1.2 Standard Problems of Numerical L
这本书在国内已经绝版。目录如下 Introduction Dorit S. Hochbaum 0.1 What can approximation algorithms do for you: an illustrative example 0.2 Fundamentals and concepts 0.3 Objectives and organization of this book 0.4 Acknowledgments I Approximation Algorithms for Sc
Nonlinear Equations 4.1 Iterative Method toward Fixed Point 4.2 Bisection Method 4.3 False Position OR Regula Falsi Method 4.4 Newton(-Raphson) Method 4.5 Secant Method 4.6 Newton Method for a System of Nonlinear Equations 4.7 Symbolic Solution for
Python参考手册,官方正式版参考手册,chm版。以下摘取部分内容:Navigation index modules | next | Python » 3.6.5 Documentation » Python Documentation contents What’s New in Python What’s New In Python 3.6 Summary – Release highlights New Features PEP 498: Formatted string liter