为了提高差分进化算法对搜索空间的探索与开发能力,提高差分进化算法的收敛性与算法的进化效率,提出一种基于搜索空间均匀划分与局部搜索和聚类相结合的种群初始化方法.该方法首先对决策变量空间进行均匀划分,并从各个子空间中随机选择一个个体,得到的个体能够覆盖整个搜索空间;然后,利用Hooke-Jeeves算法对各子空间进行局部搜索得到局部最优的个体,并结合改进的Canopy算法与K-means聚类算法,辨识搜索空间中的前景区域,以此为基础对局部搜索产生的局部最优个体进行筛选,最终生成初始种群中的个体.通过