您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. Consistent-Sparse-Deep-Learning-Theory-and-Computation-源码

  2. 一致的稀疏深度学习:理论与计算 我们提出了一种类似于常客的方法来学习稀疏DNN,并证明其在贝叶斯框架下的一致性。 稀疏DNN的结构可以在经过训练的贝叶斯神经网络与常规先验混合的基础上,使用基于拉普拉斯近似的边际后验包含概率方法一致地确定。 相关刊物 孙燕* ,宋其凡*和梁发名, JASA,印刷中。 复制论文中的实验结果: 模拟: 产生资料: python Generate_Data.py 回归: python Simulation_Regression.py --data_index 1
  3. 所属分类:其它

    • 发布日期:2021-03-08
    • 文件大小:60416
    • 提供者:weixin_42138780