点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - Consistent-Sparse-Deep-Learning-Theory-and-Computation-源码
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
Consistent-Sparse-Deep-Learning-Theory-and-Computation-源码
一致的稀疏深度学习:理论与计算 我们提出了一种类似于常客的方法来学习稀疏DNN,并证明其在贝叶斯框架下的一致性。 稀疏DNN的结构可以在经过训练的贝叶斯神经网络与常规先验混合的基础上,使用基于拉普拉斯近似的边际后验包含概率方法一致地确定。 相关刊物 孙燕* ,宋其凡*和梁发名, JASA,印刷中。 复制论文中的实验结果: 模拟: 产生资料: python Generate_Data.py 回归: python Simulation_Regression.py --data_index 1
所属分类:
其它
发布日期:2021-03-08
文件大小:60416
提供者:
weixin_42138780