您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. DCNN_Ferroics:从STEM图像中深度学习铁电中的极化数据-源码

  2. DCNN_Ferroics 从STEM图像中深度学习铁电中的极化数据 这项研究的目的是展示如何使用深度卷积神经网络预测掺有五种不同Sa浓度(0%,7%,10%,13%和20%)的铋铁氧体(BFO)的极化( DCNNs)有和没有原子发现。 这些笔记本特别展示了: (1)如何使用“滑动窗口”方法生成不在原子周围居中(NC)的子图像, (2)如何生成以原子为中心(C)的子图像, (3)如何在与一种Sm浓度相对应的图像/子图像之一上训练DCNN,并将其应用于其他构图, (4)如何构造特征图,
  3. 所属分类:其它

    • 发布日期:2021-02-25
    • 文件大小:16777216
    • 提供者:weixin_42100032