您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. DataWhale组队学习打卡(二)

  2. 前言 记《手动学深度学习》组队学习第二次打卡 打卡内容 线性回归代码实现(基于Pytorch) 理论复习 线性回归理论部分可参考上一篇博客 线性回归模型从零开始的实现 借助jupyter运行代码,方便清晰展示各环节的输出情况。 1. 导入基础模块 In [ ]: # import packages and modules %matplotlib inline import torch from IPython import display from matplotlib import pyplo
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:75776
    • 提供者:weixin_38682406
  1. DataWhale组队打卡学习营task05-1 卷积神经网络基础

  2. 卷积神经网络基础 二维卷积层 本节介绍的是最常见的二维卷积层,常用于处理图像数据。 二维互相关运算 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。图1展示了一个互相关运算的例子,阴影部分分别是输入的第一个计算区域、核数组
  3. 所属分类:其它

    • 发布日期:2021-01-06
    • 文件大小:373760
    • 提供者:weixin_38696339
  1. Datawhale 组队学习打卡营 任务13:卷积神经网络基础

  2. 卷积神经网络基础 本章介绍卷积神经网络的基础概念,主要是卷积层和池化层,并解释填充、步幅、输入通道和输出通道的含义。 目录 二维卷积层 二维互相关运算 二维卷积层 互相关运算和卷积运算 特征图和感受野 填充和步幅 填充 步幅 多输入通道和多输出通道 多输入通道 多输出通道 1*1卷积层 卷积层和全连接层的对比 卷积层的简洁实现 池层 二维池化层 池化层的简洁实现 二维卷积层 最常见的二维卷积层,常用于处理图像数据。 二维互相关运算 二维互相关(cross-correlation)运算的输入是一个
  3. 所属分类:其它

    • 发布日期:2021-01-20
    • 文件大小:301056
    • 提供者:weixin_38746818