点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - DeepLearning_Task3_过拟合、欠拟合/梯度消失、梯度爆炸/循环神经网络进阶
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
Deep Learning_Task3_过拟合、欠拟合/梯度消失、梯度爆炸/循环神经网络进阶
一、过拟合、欠拟合及其解决方案 ·模型选择、过拟合和欠拟合 训练误差(training error):模型在训练数据集上表现出来的误差 泛化误差(generalization error):模型在任意一个测试样本上表现出的误差的期望,并常常通过测试数据集上的误差来近似 计算训练误差和泛化误差可以使用损失函数,比如平方损失函数和交叉熵损失函数等 模型选择 验证数据集 在严格意义上,测试集只能在所有超参数和模型参数选定后使用一次,不可以使用测试数据选择模型,如调参;而由于无法通过训练误差估计泛化误差
所属分类:
其它
发布日期:2021-01-06
文件大小:331776
提供者:
weixin_38646914