您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. DeepReinforcementLearning-DDPG-for-RoboticsControl:这是名为深度确定性策略梯度(DDPG)的深度强化学习算法的实现,以训练4自由度机械臂达到移动目标。 动作空间是连续的,学习的特工为机器人输

  2. DDPGforRoboticsControl 这是名为深度确定性策略梯度(DDPG)的深度强化学习算法的实现,用于训练4自由度机械臂以达到移动目标。 动作空间是连续的,学习的代理会输出扭矩以使机器人移动到特定的目标位置。 环境 一个包含20个相同代理的,每个代理都有其自己的环境副本。 在这种环境下,双臂可以移动到目标位置。 对于代理人的手在目标位置中的每一步,将提供+0.1的奖励。 因此,座席的目标是在尽可能多的时间步中保持其在目标位置的位置。 观察空间由33个变量组成,分别对应于手臂的位置
  3. 所属分类:其它

    • 发布日期:2021-02-17
    • 文件大小:20971520
    • 提供者:weixin_42141437