ENM531:数据驱动的建模和概率科学计算
课程说明
我们将从统计学习的角度重新审视古典科学计算。在这种新的计算范式中,微分方程,守恒定律和数据在预测建模管道中充当补充代理。本课程旨在探索现代机器学习作为一种统一的计算工具的潜力,该工具使人们能够从实验数据中学习模型,推导微分方程的解决方案,融合来自模型层次结构的信息以量化计算中的不确定性,并有效地优化复杂的工程系统。
涉及的特定主题涵盖了有监督和无监督学习的最新发展:使用深度神经网络进行非线性回归/分类,使用高斯过程进行不确定性下的多保真度建模