点数信息
www.dssz.net
注册会员
|
设为首页
|
加入收藏夹
您好,欢迎光临本网站!
[请登录]
!
[注册会员]
!
首页
移动开发
云计算
大数据
数据库
游戏开发
人工智能
网络技术
区块链
操作系统
模糊查询
热门搜索:
源码
Android
整站
插件
识别
p2p
游戏
算法
更多...
在线客服QQ:632832888
当前位置:
资源下载
搜索资源 - FUNDED_NISL:FUNDED是用于构建漏洞检测模型的新颖学习框架-源码
下载资源分类
移动开发
开发技术
课程资源
网络技术
操作系统
安全技术
数据库
行业
服务器应用
存储
信息化
考试认证
云计算
大数据
跨平台
音视频
游戏开发
人工智能
区块链
在结果中搜索
所属系统
Windows
Linux
FreeBSD
Unix
Dos
PalmOS
WinCE
SymbianOS
MacOS
Android
开发平台
Visual C
Visual.Net
Borland C
CBuilder
Dephi
gcc
VBA
LISP
IDL
VHDL
Matlab
MathCAD
Flash
Xcode
Android STU
LabVIEW
开发语言
C/C++
Pascal
ASM
Java
PHP
Basic/ASP
Perl
Python
VBScript
JavaScript
SQL
FoxBase
SHELL
E语言
OC/Swift
文件类型
源码
程序
CHM
PDF
PPT
WORD
Excel
Access
HTML
Text
资源分类
搜索资源列表
FUNDED_NISL:FUNDED是用于构建漏洞检测模型的新颖学习框架-源码
资金 使用图神经网络和开源资源库检测代码漏洞。这是模型中描述的实现: ,, , ,,,,李立变和,“将基于图的学习与自动数据收集相结合以检测代码漏洞” 。 FUNDED是用于构建漏洞检测模型的新颖学习框架,该框架利用图神经网络(GNN)的进步来开发一种新颖的基于图的学习方法,以捕获并推理程序的控制,数据和调用依赖性。 2020年11月-该论文被接受! 在线工具和更多数据集可在我们的。 内容 入门 这些说明将为您提供在本地计算机上运行并运行的项目的副本,以进行开发和测试。 先决条件
所属分类:
其它
发布日期:2021-03-22
文件大小:97517568
提供者:
weixin_42099942