您好,欢迎光临本网站![请登录][注册会员]  

搜索资源列表

  1. Feature selection for data classification based on pls supervised feature extraction and false nearest neighbors

  2. 在高维数据分类中,针对多重共线性、冗余特征及噪声易导致分类器识别精度低和时空开销大的问题,提出融合偏最小二乘(Partial Least Squares,PLS)有监督特征提取和虚假最近邻点(False Nearest Neighbors,FNN)的特征选择方法:首先利用偏最小二乘对高维数据提取主元,消除特征之间的多重共线性,得到携带监督信息的独立主元空间;然后通过计算各特征选择前后在此空间的相关性,建立基于虚假最近邻点的特征相似性测度,得到原始特征对类别变量解释能力强弱排序;最后,依次剔除解释
  3. 所属分类:其它

    • 发布日期:2021-02-09
    • 文件大小:3145728
    • 提供者:weixin_38555350